Circadian clocks in symbiotic corals: the duet between Symbiodinium algae and their coral host.
نویسندگان
چکیده
To date, the association and synchronization between two organismal circadian clocks ticking in parallel as part of a meta-organism (termed a symbiotic association), have rarely been investigated. Reef-building corals exhibit complex rhythmic responses to diurnal, lunar, and annual changes. Understanding circadian, circatidal, and annual regulation in reef-building corals is complicated by the presence of photosynthetic endosymbionts, which have a profound physiochemical influence on the intracellular environment. How corals tune their animal-based clock machinery to respond to external cues while simultaneously responding to internal physiological changes imposed by the symbiont, is not clear. There is insufficient molecular or physiological evidence of the existence of a circadian pacemaker that controls the metabolism, photosynthesis, synchronized mass spawning, and calcification processes in symbiotic corals. In this review, we present current knowledge regarding the animal pacemaker and the symbiotic-algal pacemaker. We examine the evidence from behavioral, physiological, molecular, and evolutionary perspectives. We explain why symbiotic corals are an interesting model with which to study the complexities and evolution of the metazoan circadian clock. We also provide evidence of why the chronobiology of corals is fundamental and extremely important for explaining the biology, physiology, and metabolism of coral reefs. A deeper understanding of these complex issues can help explain coral mass spawning, one of the earth's greatest and most mysterious behavioral phenomena.
منابع مشابه
Photosynthetic circadian rhythmicity patterns of Symbiodium, the coral endosymbiotic algae
Biological clocks are self-sustained endogenous timers that enable organisms (from cyanobacteria to humans) to anticipate daily environmental rhythms, and adjust their physiology and behaviour accordingly. Symbiotic corals play a central role in the creation of biologically rich ecosystems based on mutualistic symbioses between the invertebrate coral and dinoflagellate protists from the genus S...
متن کاملRelationship between antioxidant traits of Symbiodinium sp. symbiotic dinoflagellate extract under physicochemical factors during different seasons in Persian Gulf and Gulf of Oman
Coral bleaching, loss of symbiotic algae of Symbiodinium sp. or photosynthetic microalgae pigments from their coral host have become commonplace in recent decades due to the rising of sea temperatures and changes in physicochemical factors. It is essential to study the susceptibility of corals to bleaching, the physiology of its symbiotic algae, and its capacity to cope with abiotic stress. Oxi...
متن کاملThe effect of temperature compensation on the circadian rhythmicity of photosynthesis in Symbiodinium, coral-symbiotic alga
Circadian rhythms, which are found in most eukaryotes, are defined as rhythms that persist under constant conditions with a periodicity close to 24 h. One central key characteristic of all circadian rhythms is "temperature compensation", which allows organisms to maintain robust rhythms with a period close to a diel cycle over a broad range of physiological temperatures. To better understand th...
متن کاملInfluence of the Quantity and Quality of Light on Photosynthetic Periodicity in Coral Endosymbiotic Algae
Symbiotic corals, which are benthic organisms intimately linked with their environment, have evolved many ways to deal with fluctuations in the local marine environment. One possible coping mechanism is the endogenous circadian clock, which is characterized as free running, maintaining a ~24 h periodicity of circuits under constant stimuli or in the absence of external cues. The quantity and qu...
متن کاملComparing the Effects of Symbiotic Algae (Symbiodinium) Clades C1 and D on Early Growth Stages of Acropora tenuis
Reef-building corals switch endosymbiotic algae of the genus Symbiodinium during their early growth stages and during bleaching events. Clade C Symbiodinium algae are dominant in corals, although other clades - including A and D - have also been commonly detected in juvenile Acroporid corals. Previous studies have been reported that only molecular data of Symbiodinium clade were identified with...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Marine genomics
دوره 14 شماره
صفحات -
تاریخ انتشار 2014